Effets de lentille sur le rayonnement de fond cosmique *Un état de l'art* K. Benabed – IAP 4/05

- Mesurer les ondes gravitationnelles primordiales avec la polarisation du CMB
- Effet de lentille gravitationnelle sur la polarisation
- ► Enjeux
 - Un bruit
 - Une sonde de la distribution de matière
- Comment mesurer l'effet de lentille
 - reconstruction
 - corrélation
- Impact sur les paramètres cosmologiques

Le CMB alpha et omega de la cosmologie ?

Du rayonnement de fond aux paramètres...

Et la polarisation?

- Il manque au résultats actuels la polarisation du rayonnement
- Impossible de valider complètement l'inflation

Avenir Radieux

Planck & successeurs mesurent le CMB

- Mesure des ondes gravitationnelles avec la polarisation
- Mesure du spectre des fluctuations primordiales
- Prouver la théorie d'inflation
 - Reconstruction du potentiel d'inflation
- Passer à des loisirs plus constructifs !

Effet de lentille gravitationnell

C

Effet de lentille gravitationnelle

Conséquences

Déformation du rayonnement observé

Mélange entre les deux modes de polarisation

Modification du spectre de puissance

plus importante que la signature des ondes gravitationnelles!

Le rayonnement de fond comme mesure des fluctuations primordiales

Fluctuations du rayonnement de fond

Polarisation

Les diffusions sur les anisotropies quadrupolaires induisent un exces de polarisation rectiligne **Polarisation est créée :**

Par la diffusion Thomson

Uniquement sur la surface de derniere diffusion

Uniquement à partir des anisotropies quadrupolaires

Description de la polarisation

Les variables de Stokes Q et U $E_x = A_x \cos(\omega t + \delta_x), \ E_y = A_y \cos(\omega t + \delta_y)$ $I = A_x^2 + A_y^2, \ Q = A_x^2 - A_y^2, \ U = 2A_x A_y \cos(\delta_x - \delta_y)$ ► Q et U forment un spineur-2 $P_{\pm} = Q \pm iU \stackrel{\phi}{\longrightarrow} P_{\pm} e^{\pm 2i\phi}$ Les composantes E et B $E = \Delta^{-1} \left[\left(\partial_x - \partial_y \right) Q + 2 \partial_x \partial_y U \right]$ $B = \Delta^{-1} \left[\left(\partial_{\boldsymbol{x}} - \partial_{\boldsymbol{y}} \right) U - 2 \partial_{\boldsymbol{x}} \partial_{\boldsymbol{y}} Q \right]$ $\begin{array}{c|c} -\searrow \\ & B \end{array} \\ \hline \\ & B \end{array} \\ \hline \\ & - \end{array}$ E est un scalaire B pseudo scalaire $E \xrightarrow{P} E. B \xrightarrow{P} -B$

Fluctuations primordiales

- Scalaires
 - Perturbation de densité
- Tensorielles
 - Ondes gravitationnelles
- Le rapport T/S est fonction de l'échelle d'énergie de l'inflation
- Le spectre de puissance des perturbations scalaires et tensorielle permet de tester le potentiel d'inflation

Modèles Slow Roll

Trois paramètres pour définir le modèle

$$\varepsilon = \frac{M_{\rm pl}^2}{16\pi} \left(\frac{V'}{V}\right)^2 \ll 1 \qquad \eta = \frac{M_{\rm pl}^2}{8\pi} \frac{V''}{V} \ll 1 \qquad r = T/S \propto V_*^4$$

Suffisant pour calculer les spectres

$$n_s \sim 1 - 6\varepsilon + 2\eta$$
 $n_T \sim -2\varepsilon$

Mesurer la signature des spectres et leurs amplitudes respectives dans le CMB permet de specifier le modèle

Signature sur le rayonnement de fond

- Perturbations scalaires
 - anisotropies de Température
 - Polarisation E
- Perturbations tensorielles
 - anisotropies de température
 - Polarisation E
 - Polarisation B
 - faible amplitude. Uniquement à grande échelle

L'effet de lentille gravitationnelle crée de la polarisation B

L'effet de lentille des grandes structures

Effet de lentille

$$\theta_I = \theta_S - 2 \frac{\mathcal{D}_{\rm OL} \mathcal{D}_{\rm LS}}{D_{\rm OS}} \nabla_{2\rm D} \phi(\theta_I)$$

Déformation proportionnelle au gradient transverse du potentiel

$$\kappa(\theta, z_s) = -\frac{3}{2}\Omega_o \int \frac{dz}{H(z)} \frac{1}{a} \frac{\mathcal{D}(z)\mathcal{D}(z, z_s)}{\mathcal{D}(z_s)} \delta(\theta, z)$$

Effet cumulé des grandes structures proportionnel à la projection du contraste de densité

Description

 $\Delta \kappa = (\partial_1^2 - \partial_2^2)\gamma_1 + 2\partial_1\partial_2\gamma_2$ Et on ignore un "Curl" : effet secondaire faible

Sur le rayonnement de fond

Sur la température, sur la polarisation Q, U Dans l'approximation optique $X(\theta) = X(\theta + \xi)$ géométrique $\sim X(\theta) + \xi_i \nabla_i X + \xi_i \xi_j \nabla_i \nabla_j X + ...$

Faible déformation Couplage à grande échelle Amplification des petites échelles apparition de non-gaussinité déformations géométrique

$$C_{l} = \left(1 - l^{2}\sigma_{0}\right) \tilde{C}_{l} \\ + \int d^{2}l' \frac{\left(\left(\mathbf{l} - \mathbf{l}'\right) \cdot \mathbf{l}'\right)^{2}}{l'^{4}} \tilde{C}_{|\mathbf{l} - \mathbf{l}'|} P_{\kappa}(l') + o(\kappa^{2})$$

Température

Décomposition E/B

La modification des propriétés géométriques modifie la décomposition *E*/ $\partial_i \delta \theta^l P^j + \partial^j \delta \theta^l \partial_i P^l \neq \partial_j \delta \theta^l P^i + \partial^i \delta \theta^l \partial_j P^l$

Mélange de E et B

$$\Delta \hat{E}(\theta) = (1 - 2\kappa)\Delta E(\theta) \qquad \Delta \hat{B}(\theta) = (1 - 2\kappa)\Delta B(\theta) - 2\delta_{ij}(\gamma_i P_j + \partial_k \gamma_i \partial_k P_j) \qquad -2\varepsilon_{ij}(\gamma_i P_j + \partial_k \gamma_i \partial_k P_j)$$

Spectre de Puissance

$$C_{l}^{\ \ /B} = (1 - l^{2} - 0) \tilde{C}_{l}^{E/B} + \frac{1}{2} \int d^{2}l' \frac{((\mathbf{l} - \mathbf{l}') \cdot \mathbf{l}')^{2}}{l'^{4}} P_{\kappa}(l') \\ \times \left[\left(+ \tilde{C}_{|\mathbf{l} - \mathbf{l}'|}^{\ \ /E} \right) + \cos(4\phi_{l}) \left(- \tilde{C}_{|\mathbf{l} - \mathbf{l}'|}^{\ \ /E} \right) \right] + o(\kappa^{2})$$

Un bruit ou une observable?

- L'effet de lentille n'est un bruit que pour la polarisation B
 - nettoyer B
- Intérêt d'une mesure de l'effet de lentille
 - mesurer la distribution de matière jusque z=1000
 - Etudier l'évolution de la distribution de matière

Mesurer l'effet de lentille sur le rayonnement de fond

Mesure/Reconstruction

- Mesures de non gaussianité
 - Moments à 4 points, Ellipticité, Cumulants
 - Genus, fonctionelles de Minkovski
- Reconstruction
 - Quadratique
 - Iterative
- Corrélation croisées
 - Autre mesure des grandes structures

Non gaussianité

- Moments à 4 points
 - Bernardeau 97, Hu 01
- Cumulants d'ordres supérieurs
 - ► Kesden et al 02
- Ellipticité
 - Bernardeau 99
- Corrélation de points chauds
 - Takada 00
- Minkovski, Genus
 - Schmalzing et al 99, Takada 01

 $\langle T^4 \rangle = \langle \tilde{T}^4 \rangle + \langle \tilde{T}^2 \rangle \ \langle \tilde{\nabla}_i \ T^2 \xi_i \rangle$

Reconstruction

Reconstruction quadratique

Si l'on avait plusieurs CMB et un seul effet de lentille...

$$\langle X(\mathbf{l}_1)X'(\mathbf{l}_2)\rangle_{\text{CMB}} = f_{\alpha}(\mathbf{l}_1,\mathbf{l}_2) \ (\mathbf{l}_1+\mathbf{l}_2)^{-2} \ \kappa(\mathbf{l}_1+\mathbf{l}_2)$$

 $\alpha \qquad f_{\alpha}(\mathbf{l}_1,\mathbf{l}_2)$

- $\Theta\Theta \quad \tilde{C}_{l_1}^{\Theta\Theta}(\mathbf{L}\cdot\mathbf{l}_1) + \tilde{C}_{l_2}^{\Theta\Theta}(\mathbf{L}\cdot\mathbf{l}_2)$
- $\Theta E \quad \tilde{C}_{l_1}^{\Theta E} \cos \varphi_{\mathbf{l}_1 \mathbf{l}_2} (\mathbf{L} \cdot \mathbf{l}_1) + \tilde{C}_{l_2}^{\Theta E} (\mathbf{L} \cdot \mathbf{l}_2)$

$$\Theta B \quad \tilde{C}_{l_1}^{\Theta E} \sin 2\varphi_{\mathbf{l}_1 \mathbf{l}_2} (\mathbf{L} \cdot \mathbf{l}_1)$$

- $EE \quad [\tilde{C}_{l_1}^{EE}(\mathbf{L}\cdot\mathbf{l}_1) + \tilde{C}_{l_2}^{EE}(\mathbf{L}\cdot\mathbf{l}_2)]\cos 2\varphi_{\mathbf{l}_1\mathbf{l}_2}$
- $EB \quad [\tilde{C}_{l_1}^{EE}(\mathbf{L} \cdot \mathbf{l}_1) \tilde{C}_{l_2}^{BB}(\mathbf{L} \cdot \mathbf{l}_2)] \sin 2\varphi_{\mathbf{l}_1\mathbf{l}_2}$

$$BB \quad [\tilde{C}_{l_1}^{BB}(\mathbf{L}\cdot\mathbf{l}_1) + \tilde{C}_{l_2}^{BB}(\mathbf{L}\cdot\mathbf{l}_2)]\cos 2\varphi_{\mathbf{l}_1\mathbf{l}_2}$$

Seljak Zaldarriaga et al 99+ Hu & Okamoto 02+ Kesden Cooray et al 03

Un estimateur optimal de l'effet de lentille

$$d_{\alpha}(\mathbf{L}) = \frac{A_{\alpha}(L)}{L} \int d^2 l_1 x(\mathbf{l}_1) x'(\mathbf{l}_2) F_{\alpha}(\mathbf{l}_1, \mathbf{l}_2)$$

$$F_{\alpha} \sim \frac{f_{\alpha}}{C_{l1}C_{l2}}$$

Ce n'est pas le cas, et il reste un bruit d'autocorrelation

Reconstruction "itérative"

Inverser l'équation d'effet de lentille pour B

 $\Delta \hat{B}(\theta) = (1 - 2\kappa) \Delta B(\theta)$ $-2\varepsilon_{ij} (\gamma_i P_j + \partial_k \gamma_i \partial_k P_j)$

Impossible ! Problème de conditions au limites...

Hypothèses simplificatrices Espace de Fourier Linearisation

Hirata & Seljak 03+

 Λ_g Opérateur linéaire "Effet de lentille"

Minimiser la vraisemblance d'un effet de lentille pour les données

$$\mathcal{L}(g) = \frac{1}{2} \ln \det \hat{\mathbf{C}}_g + \frac{1}{2} \hat{\mathbf{x}}^{\dagger} \hat{\mathbf{C}}_g^{-1} \hat{\mathbf{x}}, \quad \hat{\mathbf{C}}_g = \Lambda_g \mathbf{C} \Lambda_g^{\dagger}$$
$$\frac{\partial \mathcal{L}}{\partial \kappa_1} = \operatorname{Tr} \left(\hat{\mathbf{C}}_g^{-1} \frac{\partial \Lambda_g}{\partial \kappa_1[g]} \mathbf{C} \Lambda_g^{\dagger} \right) - \hat{\mathbf{x}}^{\dagger} \hat{\mathbf{C}}_g^{-1} \frac{\partial \Lambda_g}{\partial \kappa_1[g]} \mathbf{C} \Lambda_g^{\dagger} \hat{\mathbf{C}}_g^{-1} \hat{\mathbf{x}}$$

avec prior sur le spectre de puissance de l'effet de lentille

$$[\mathbf{C}^{\kappa\kappa-1}\kappa]_{\mathbf{l}}^{*} = -\mathrm{Tr}\left(\hat{\mathbf{C}}_{g}^{-1}\frac{\partial\Lambda_{g}}{\partial\kappa_{\mathbf{l}}[g]}\mathbf{C}\Lambda_{g}^{\dagger}\right) + \hat{\mathbf{x}}^{\dagger}\hat{\mathbf{C}}_{g}^{-1}\frac{\partial\Lambda_{g}}{\partial\kappa_{\mathbf{l}}[g]}\mathbf{C}\Lambda_{g}^{\dagger}\hat{\mathbf{C}}_{g}^{-1}\hat{\mathbf{x}}.$$

On itère vers la solution.

Idées similaire à la reconstruction de carte optimale du CMB.

Résultats

Réference $\Delta T = \sqrt{2}\Delta P = 1.41 \mu K \operatorname{arcmin}$ $\sigma_{FWHM} = 4'$ Seulement 35°Carré 3 Simulations Spectre primordial connu

Mais...

- Forte supposition sur le spectre primordial du CMB dans les deux méthodes
 - Convergence vers le spectre non lentillé
- Aucun test réaliste à ce jour
- Pour la méthode itérative, pas de mesure de la supposition de périodicité

Corrélations Croisées

Corrélations croisées

Permet de réduire deux problèmes

Bruit de mesure

 Var (⟨κ₁κ₂⟩) = 2 ⟨κ²⟩² + ⟨κ²⟩ (N₁ + N₂) + N₁N₂
 Var (⟨κ₁²⟩) = 2 ⟨κ²⟩² + 4 ⟨κ²⟩N N₂ ≪ N

 Absence de petites échelles

Avec les estimateurs de reconstruction

- Avec des estimateurs sans reconstruction
 - Ellipticité de T

Autres estimateurs de la distribution de matière

Effet de lentille sur les galaxies d'arrière plan (z=1,2)
Tomographie de l'effet de lentille
Effet ISW (contribution ISW à la température
Distribution des galaxies, amas

$$r(z_{\rm gal}) = \frac{\langle \kappa \kappa_{\rm gal} \rangle}{\sqrt{\langle \kappa^2 \rangle \langle \kappa_{\rm gal}^2 \rangle}}.$$

r coefficient	$z_{gal} = 1$	$z_{\rm gal} = 2$
EdS, linear	0.42	0.60
$\Omega = 0.3, \Lambda = 0.7$, linear	0.31	0.50
$\Omega = 0.3, \Lambda = 0.7$, nonlinear	0.40	0.59

Exces d'alignement

Polarisation B

• Estimateur de la corrélation croisée $b_{\Delta} \equiv \epsilon_{ij} \gamma_{\text{gal}}^{i} \Delta \hat{P}^{j}, \quad b_{\nabla} \equiv \epsilon_{ij} \partial_{k} \gamma_{\text{gal}}^{i} \partial_{k} \hat{P}^{j}.$ $\left\langle \Delta \hat{B} b_{\Delta}(\vec{\alpha}) \right\rangle = -\left\langle \Delta E^{2} \right\rangle \langle \kappa \kappa_{\text{gal}} \rangle, \quad \left\langle \Delta \hat{B} b_{\nabla}(\vec{\alpha}) \right\rangle = -\frac{1}{2} \left\langle (\vec{\nabla} E)^{2} \right\rangle \left\langle \vec{\nabla} \kappa \cdot \vec{\nabla} \kappa_{\text{gal}} \right\rangle$

	$\operatorname{CosVar}\left(\mathcal{X}_{\Delta} ight)$		$\operatorname{CosVar}\left(\mathcal{X}_{\nabla}\right)$	
	$\Omega_0 = 0.3$	$\Omega_0 = 1$	$\Omega_0 = 0.3$	$\Omega_0 = 1$
$\theta = 5', \theta_{\rm gal} = 2.5'$	6.44%	4.77%	6.06%	4.72%
$\theta = 5', \theta_{\rm gal} = 5'$	6.58%	4.79%	4.99%	4.23%
$\theta = 10', \theta_{\rm gal} = 5'$	8.71%	6.73%	9.49%	7.62%

100ºCarré

KB, Bernardeau & van Waerbeke 01

Corrélation WMAP/SDSS

- On cherche la corrélation avec la distribution de galaxies
- Reconstruction quadratique
- Mesure du biais galactique $b_g = 1.81 \pm 1.92 \quad (b_g \sim 1.8)$
- Bruit important
 - manque de résolution
 - manque de statistique

Hirata et al 04

Galaxy-convergence correlation without point sources (frequency averaged)

Détermination des paramètres cosmologiques

T/S après reconstruction

paramètres cosmologiques

À l'exception de T/S, peu affectées

- Pour l'instant pas d'expérience sensible
- Effets des non gaussianités sur la matrice de covariance

Matrice de covariance des spectres

- En première approximation $\operatorname{CoVar}(C_{\ell}) = C_{\ell}^2$
- Termes non-gaussiens du même ordre dus à l'effet de lentille
- Calculs en cours avec J. Rocher
- Resultats préliminaires
 - contribution négligeable par rapport au bruit de mesure
 - Valide une approximation silencieuse assez répendue

paramètres cosmologiques

- Beaucoup à apprendre avec les corrélations croisées
 - Tomographie de la distribution de matière
 - Energie sombre

Corrélation croisée

Problèmes ouverts

Cutting edge

- ► "Curl" (Cooray et al 05)
 - Effet secondaire très faible
 - Effet des ondes gravitationnelles négligeable
- "Polémique" sur le calcul de l'effet de lentille
 - Importance des non-gaussianité de la distribution de matière (Amblard et al 04)
 - validité de l'approximation linéaire ? (Challinor & Lewis 05)

Calcul de l'effet de lentille

Problème de schéma de resommation $f(\kappa) \cdot g(\kappa) \sim f(\kappa) \cdot (g_0(\kappa) + g_1(\kappa) + ...)$

 $f(\mathbf{\kappa}) \cdot g(\mathbf{\kappa}) \sim g_0 \cdot f_0 + f_0 \cdot g_1 + f_1 \cdot g_0 + o(\mathbf{\kappa})$

Argument massue ???

"Ordre plus haut résultat plus juste"

Convergence lente de la série dans les simulations

Conclusion

- Bon espoir pour les méthodes de détection/reconstruction
 - ► systématiques
 - autres effets secondaires
- Incertitude sur la mesure de T/S
 - Cout élévé de l'expérience
- Interet des méthodes de corrélations croisées